Banner moiws
TRANG CHỦ TIN TỨC CÔNG NGHỆ PHÁT MINH THẾ KỶ KHOA HỌC GÓC NHÌN 360° SÁNG CHẾ Ý TƯỞNG XANH NĂNG LƯỢNG BÍ ẨN VIDEO
TRANG CHỦ > Bí Ẩn > Khám phá Bản in  |  Gửi thư  |  Kênh RSS
Kamland: Điều tra các nguồn nhiệt phát ra từ trái đất
(phatminh.com) Các nhà khoa học tại Phòng thí nghiệm Berkeley, Hoa Kỳ, và đồng nghiệp đã sử dụng máy dò KamLAND để đo lường lượng phóng xạ phát ra từ các nguồn nhiệt của trái đất.

Điều gì làm di chuyển các tầng lục địa cũng như các tầng nước biển? Làm tan chảy lõi sắt bên ngoài và tạo ra từ trường của Trái đất? Câu trả lời là: nhiệt nóng chảy. Các nhà địa chất đã sử dụng phép đo nhiệt độ từ hơn 20.000 lỗ khoan trên khắp thế giới ước tính rằng có khoảng 44 terawatt (44 nghìn tỷ watt) nhiệt lượng liên tục phát thải vào trong không gian, từ nguồn nhiệt trong lòng trái đất. Vậy các nguồn nhiệt này từ đâu mà ra?

Phân rã phóng xạ của Uran, thori, và kali trong lớp vỏ trái đất và lớp vỏ là một nguồn cung cấp nhiệt chính, và trong năm 2005 các nhà khoa học hợp tác nghiên cứu trong chương trình KamLAND, trụ sở tại Nhật Bản, lần đầu tiên cho thấy có một cách thức để đo lường sự đóng góp nhiệt trực tiếp. Bí quyết là nắm bắt những gì KamLAND phát hiện được: sự phát xạ geo-antineutrinos, khi các đồng vị phóng xạ phân rã. (KamLAND hay còn gọi là Máy dò geoneutrinos, sử dụng chất phát sáng Antineutrino).

Một nguồn nhiệt lượng chính khoảng 44 nghìn tỷ watt chảy bên trong của Trái Đất là sự phân rã của các đồng vị phóng xạ trong lớp vỏ mantle và lớp vỏ crust
Một nguồn nhiệt lượng chính khoảng 44 nghìn tỷ watt chảy bên trong của Trái Đất là sự phân rã của các đồng vị phóng xạ trong lớp vỏ mantle và lớp vỏ crust. Các nhà khoa học sử dụng máy dò neutrino KamLAND Nhật Bản đã đo lượng nhiệt được tạo ra theo cách này bằng cách bẫy geoneutrinos phát sinh trong quá trình phân rã phóng xạ.

"Máy dò geoneutrinossử dụng chất phát sáng Antineutrino (KamLAND), có những lợi thế rõ ràng và đóng vai trò quan trọng" theo Stuart Freedman, làm việc tại Phòng thí nghiệm quốc gia Lawrence Berkeley, Bộ Năng lượng Hoa Kỳ (Phòng thí nghiệm Berkeley). Freedman, thành viên của Ban Khoa học hạt nhân, Phòng thí nghiệm Berkeley và là giáo sư tại Khoa Vật lý, Đại học California Berkeley, Hoa Kỳ, trưởng nhóm nghiên cứu tại Hoa Kỳ. "KamLAND được thiết kế đặc biệt để nghiên cứu antineutrinos. Chúng tôi có thể phát hiện antineutrinos từ những tạp âm với độ nhạy rất cao."

Các nhà khoa học sử dụng máy dò antineutrinos (KamLAND) đã công bố số liệu mới về năng lượng nhiệt phát ra từ phân rã phóng xạ trên tạp chí Nature Geoscience. Thông qua việc cải thiện độ nhạy của máy dò antineutrinos (KamLAND), và các dữ liệu có giá trị được bổ sung trong nhiều năm, dự đoán mới không chỉ đơn thuần là "phù hợp" với những tiên đoán của mô hình địa vật lý được chấp nhận mà phải có đủ chính xác để hỗ trợ tinh chỉnh trong các mô hình.

Một điều chắc chắn nhất là 97% lượng phân rã phóng xạ sẽ cung cấp ít nhất khoảng một nửa lượng nhiệt lượng phát ra từ trái đất. Nguồn nhiệt còn lại có thể là từ sự hình thành của hành tinh... hoặc từ những những nguồn khác chưa được khám phá.

Truy tìm neutrino phát ra từ sâu trong trái đất:

Antineutrinos được sản xuất không chỉ bởi sự phân rã của Uran, Thori và các đồng vị kali mà còn đòi hỏi một loạt các yếu tố khác, bao gồm các sản phẩm phân hạch trong lò phản ứng điện hạt nhân. Trong thực tế, chính từ phản ứng sản xuất antineutrinos mà neutrino đầu tiên được phát hiện trực tiếp (neutrino và antineutrinos được phân biệt với nhau bởi sự tương tác, khi chúng đồng thời xuất hiện).

Các neutrino tương tác với nhau bởi các lực yếu và lực hấp dẫn, không đáng kể ngoại trừ trên quy mô của vũ trụ - chúng đi xuyên qua trái đất giống như đi qua môi trường trong suốt. Điều này làm cho việc nhận biết neutrino trở nên khó khăn, nhưng vào những dịp rất hiếm khi phản neutrino va chạm với một proton bên trong máy dò antineutrinos (KamLAND) - một quả cầu chứa khoảng một ngàn tấn dầu khoáng sản sáng lấp lánh, tạo ra tín hiệu khuyếch đại gấp đôi không thể nhầm lẫn được.

Tín hiệu đầu tiên đi đến khi phản neutrino chuyển đổi proton thành 1 neutron cộng 1 positron (phản điện tử), nhanh chóng bị tiêu diệt khi va chạm với một điện tử bình thường, đây là quá trình phân rã ngược beta. Chớp sáng mờ nhạt của ánh sáng từ các positron ion hóa và quá trình bị tiêu diệt được chọn của hơn 1.800 các ống nhân quang điện trong máy dò antineutrinos (KamLAND). Vài trăm triệu phần của 1 giây sau đó, một neutron trong quá trình phân rã bị bắt bởi một proton trong chất lỏng giàu hydro và phát ra một tia gamma, đây là tín hiệu thứ hai. Sự "trì hoãn trùng hợp ngẫu nhiên" này cho phép tương tác phản neutrino được phân biệt với các sự kiện nền như sự xâm nhập của các tia vũ trụ lên hàng km đá bên trên máy dò antineutrinos (KamLAND).

Freedman nói: "Như tìm kiếm một tên gián điệp lẫn lộn trong một đám đông trên đường phố. Bạn không thể phát hiện ra tên gián điệp này. Nhưng nếu có thêm 1 tên gián điệp thứ hai trong đám đông này, thì tuy rằng dấu hiệu nhận biết vẫn còn khá nhỏ, nhưng dễ dàng để phát hiện hơn".

Máy dò antineutrinos (KamLAND) ban đầu được thiết kế để phát hiện antineutrinos từ hơn 50 lò phản ứng hạt nhân Nhật Bản, một số ở cự li gần và một số ở khoảng cách xa, để nghiên cứu các hiện tượng dao động neutrino. Lò phản ứng sản xuất các điện tử neutrino, nhưng khi chúng di chuyển, chúng dao động trong các hạt cơ bản: nơtrino Muyon và nơtrino tau.

Giám sát các lò phản ứng hạt nhân có nghĩa là các sự kiện Máy dò antineutrinos (KamLAND) ghi nhận được từ các lò phản ứng antineutrinos cũng phải được tính đến trong việc xác định các hạt geoneutrino. Điều này được thực hiện bằng cách xác định năng lượng đặc trưng và các yếu tố khác của các phản ứng antineutrinos, chẳng hạn như tỷ lệ khác nhau của sản xuất so với sự xuất hiện ổn định của các hạt geoneutrinos. Phản ứng Antineutrinos được tính toán và trừ vào tổng số. Những gì còn lại là các hạt geoneutrinos.

Theo dõi nhiệt:

Tất cả các mô hình bên trong của Trái đất phụ thuộc vào bằng chứng gián tiếp. Mô hình hàng đầu của các loại được gọi là BSE: giả định rằng lớp vỏ mantle và lớp vỏ crust có chứa lithophiles và cốt lõi bao gồm các siderophiles (yếu tố "như sắt"). Như vậy tất cả sức nóng từ sự phân rã phóng xạ đến từ lớp vỏ crust và lớp vỏ mantle khoảng 8 terawatt từ uranium 238 (238U), 8 terawatt từ thori 232 (232Th), và 4 terawatt từ kali 40 (40K).

Một phần phóng xạ nhiệt mô hình Trái đất được thể hiện qua phép đo geoneutrino

Sự trùng hợp ngẫu nhiên gấp đôi theo phương pháp sử dụng máy dò antineutrinos (KamLAND) thì lại không nhạy cảm với phần năng lượng thấp của tín hiệu hạt geoneutrino từ 238U và 232Th và hoàn toàn không nhạy cảm với hạt antineutrinos 40K. Các loại phân rã phóng xạ cũng được bỏ qua bởi máy dò, nhưng so với urani, thori, và kali thì những nguồn năng lượng thấp đã có những đóng góp không đáng kể tới nhiệt lượng phát ra từ trái đất.

Làm thế nào các nguyên tố phóng xạ được phân phối (dù thống nhất hoặc tập trung trong một "lớp chìm đắm" tại các ranh giới lõi - lớp vỏ của trái đất), do các yếu tố phóng xạ biến thể trong các địa chất địa phương (trong trường hợp của chương trình KamLAND, có ít hơn 10% thông lượng dự kiến), antineutrinos từ các sản phẩm phân hạch, và làm thế nào các hạt neutrino dao động khi chúng đi qua lớp vỏ và lớp áo. Lý thuyết thay thế này cũng được xem xét, bao gồm cả ý tưởng suy đoán có một lò phản ứng hạt nhân tự nhiên tại một nơi nào đó sâu bên trong trái đất, nơi các yếu tố phân hạch có thể tích lũy và bắt đầu một phản ứng phân hạch bền vững.

Chương trình KamLAND phát hiện 841 sự kiện phản neutrino vào giữa tháng 3 năm 2002 và tháng 11 năm 2009, trong đó có khoảng 730 sự kiện từ các lò phản ứng. Phần còn lại, khoảng 111 sự kiện, từ phân rã phóng xạ của uranium và thorium bên trong trái đất. Những kết quả này được kết hợp với dữ liệu từ thí nghiệm Borexino tại Gran Sasso ở Ý để tính toán sự đóng góp của uranium và thorium để sản xuất nhiệt của trái đất. Câu trả lời là khoảng 20 terawatt; dựa trên các mô hình, một terawatt được ước tính từ phân rã đồng vị khác.

Đây là nguồn nhiệt lượng nhiều hơn so với mô hình phổ biến nhất của mô hình BSE, nhưng vẫn ít hơn so với tổng số nhiệt lượng phát ra từ trái đất. Freedman, nói: "Một điều chúng ta có thể nói gần như chắc chắn là phân rã phóng xạ là không đáng kể so với năng lượng nhiệt của trái đất. Cho dù phần còn lại là nhiệt nguyên thủy hoặc từ một số nguồn khác, thì đó vẫn là một câu hỏi chưa có ai trả lời."

Mô hình tốt hơn có thể cho kết quả khi nhiều hơn máy dò antineutrinos (KamLAND) được đặt ở những nơi khác nhau trên toàn cầu, bao gồm cả ở các dãy núi dưới lòng biển, nơi mà lớp vỏ trái đất là mỏng và phóng xạ (không đề cập đến các lò phản ứng hạt nhân) ở mức tối thiểu.

Freedman, nói: "Đây là một vấn đề ngược, nơi bạn có rất nhiều thông tin nhưng cũng có rất nhiều biến số đầu vào, phức tạp. Phân loại những dữ liệu đầu vào này để đưa ra lời giải thích tốt nhất."

"Một phần phóng xạ nhiệt mô hình Trái đất được thể hiện qua phép đo geoneutrino" của máy dò antineutrinos (KamLAND), theo Itaru Shimizu của Đại học Tohoku, Sendai, Nhật Bản, đồng tác giả, được công bố trên tạp chí Nature Geoscience.

Chương trình nghiên cứu KamLAND được hỗ trợ bởi Bộ Văn hóa, Giáo dục, Thể thao, Khoa học và Công nghệ Nhật Bản và Cơ quan Khoa học thuộc Bộ Năng lượng Hoa Kỳ.

(Nguồn: Theo Innovations-report )
Thảo luận cho chủ đề này:
Hiện chưa có thảo luận cho chủ đề này!
Gửi thảo luận mới:
 Họ và tên
 Email
Mã kiểm tra 
TIN CẬP NHẬT MỚI NHẤT:
10 bí ẩn về người ngoài hành tinh (30/12/2015)
Cận cảnh loài ”quái vật nước ngọt lớn nhất hành tinh” ở Amazon (25/12/2015)
Thích thú với loài giun biển ’đội lốt’ cây thông Noel (24/12/2015)
Các giống chó đầu tiên xuất hiện trên trái đất (22/12/2015)
Chuyện lạ về hòn đá có mắt, biết khóc ở Trung Quốc (19/12/2015)
Những điều thú vị về hệ thống cáp ngầm dưới đáy đại dương (14/9/2015)
Những hố xanh sâu thẳm trên thế giới (28/8/2015)
Miệng hố bí ẩn ở Siberia biến thành hồ nước (14/7/2015)
Những lợi ích của việc mất mạng  (24/9/2014)
Lần đầu tiên phát hiện ngôi sao chui vào ngôi sao (24/9/2014)
CÁC TIN ĐÃ ĐĂNG:
Bật mí 22 điều lý thú có thể bạn chưa biết (19/7/2011)
Khám phá các phương pháp đo thời gian (19/7/2011)
10 phát minh hữu ích nhất năm 2011 (15/7/2011)
Máy bay có thể làm thay đổi thời tiết  (14/7/2011)
Vật dụng kỳ lạ của người ngoài hành tinh (14/6/2011)
Thế kỷ XXI có bao nhiêu nguyệt thực toàn phần? (14/6/2011)
Phát hiện hóa thạch tôm khổng lồ  (8/6/2011)
Phát hiện bộ não 2.500 năm tuổi (8/6/2011)
Thực trạng các báu vật trong các con tàu đắm cổ tại VN (27/5/2011)
Dưới đáy đại dương (27/5/2011)
Bí ẩn về những con tàu bị đắm tại Việt Nam (27/5/2011)
”Tượng táng”: Hình thức mai táng đặc biệt ở Việt Nam (27/5/2011)
Dòng sông chứa bí mật của các hoàng đế. (4/5/2011)
  Xin chào,
  Mời bạn Đăng nhập hoặc Đăng ký thành viên
win 10 - phải
honda
Robocon 2015
Thích thú với loài giun biển 'đội lốt' cây thông Noel
Các giống chó đầu tiên xuất hiện trên trái đất
10 bí ẩn về người ngoài hành tinh
Miệng hố bí ẩn ở Siberia biến thành hồ nước
Điều chưa biết về loài "sâu-cỏ" giá bạc tỷ
Những động vật khổng lồ ở Việt Nam
Phat minh thien tai
Chiếc máy bay đầu tiên
Xe điện của Nissan đạt vận tốc 300 km/giờ
Tương lai của chất dẻo sinh học sẽ ra sao?
10 nhà khoa học lỗi lạc nhất trong lịch sử
Iran đã sản xuất 4 loại thuốc nano cho bệnh nhân ung thư
Công nghệ tự chẩn bệnh nhờ ráy tai
9 cách xử lý côn trùng cắn từ những vật dụng sẵn có
Những phát minh nổi tiếng thế giới của người Việt
vu khi - khi tai
Yamaha 1
Sáng Tạo Việt