Kỹ thuật lưu trữ và khôi phục ánh sáng
Các nhà vật lý Mỹ giờ đây đã có thể ghi một xung ánh sáng đồng bộ vào một tập hợp các nguyên tử siêu lạnh - và sau đó khôi phục lại nguyên dạng xung sáng đó từ một tập hợp các nguyên tử thứ hai ở cách đó một khoảng cách nào đó.

Thí nghiệm đã chứng tỏ rằng các hạt vĩ mô là khó có thể phân biệt một cách rạch ròi như cơ học lượng tử đã nói mặc dù chúng có thể tách biệt về mặt vật lý.

Thí nghiệm được tiến hành bằng cách sử dụng các nguyên tử ngưng tụ Bose Eistein (BEC) được làm lạnh tới nhiệt độ mà tất cả chúng ở cùng một trạng thái lượng tử (Theo bài báo đăng trên tạp chí Nature).

Để bắt ánh sáng "nhảy" từ chỗ này sang chỗ khác, Lene Hau và các đồng nghiệp ở Đại học Harvard đã khai thác một kỹ thuật được họ phát triển từ năm 2001 để giữ các xung ánh sáng trong trạng thái ngưng tụ Bose-Einstein, có thể làm cho ánh sáng laser đi chậm đến mức gần như đứng lại. Kỹ thuật này bao gồm việc chiếu một xung từ một đầu phát laser vào các nguyên tử Na ở trạng thái BEC, làm cảm ứng đến việc phân bố các dao động nhỏ của điện tích trong nguyên tử.

Nhà vật lý Lene Vestergaard Hau sử dụng những tia  laser và các đám mây cực nhỏ để che nguyên tử siêu lạnh làm cho ánh sáng đi chậm đến mức gần như đứng lại.
Nhà vật lý Lene Vestergaard Hau sử dụng những tia laser và các đám mây cực nhỏ
để che nguyên tử siêu lạnh làm cho ánh sáng đi chậm đến mức gần như đứng lại.
(Ảnh: msnbcmedia.msn.com)

Thông thường các lưỡng cực sẽ phát xạ và nhanh tróng bị phân rã, nhưng khi chiếu một chùm laser có điều khiển vào các chuyên tử, chúng sẽ chuyển các dao động trong điện tử thành các dao động của spin mà dao động này ổn định hơn. Vì thế, khi mà xung laser này tắt đi, thông tin của đầu phát laser sẽ được ghi lại trên dao động của lưỡng cực spin của nguyên tử. Đảo tia laser điều khiển để giải phóng ánh sáng, cho phép các nguyên tử bức xạ lại kết hợp (ví dụ như đồng pha với xung dò ban đầu).

Điểm khác biệt trong kỹ thuật mới là xung được làm chậm để tái hiện lại tại vị trí BEC cách đó khoảng 1,6 mm. "Thủ đoạn đánh lừa" ở đây là hàm sóng của lưỡng cực spin thực ra là một sự chồng chập của các nguyên tử trong trạng thái cơ bản và trong trạng thái kích thích spin. Nhờ có nguyên lý bảo toàn xung lượng mà các nguyên tử ở trạng thái kích thích spin sẽ di chuyển khỏi BCE ban đầu khi nguyên tử hấp thụ photon từ xung laser, trong khi nguyên tử ở trạng thái cơ bản thì đứng yên tại vị trí đó.


Nội dung thông tin của xung đầu dò đã được "in dấu" trên dao động quay tròn các lưỡng cực của nguyên tử BEC đầu tiên (trên). Trong thí nghiệm mới này xung cản trở được làm để xuất hiện BEC thứ 2 cách xa khoảng 160 µm (dưới) - (Ảnh: Physicsweb.org)

Một điểm sáng tạo là nhóm ở Harvard đã quyết định đợi cho đến khi nguyên tử kích thích spin đi đến vị trí ngưng tụ thứ hai trước khi tác dụng lại các laser điều khiển. Và họ nhận ra rằng tập hợp các nguyên tử tách biệt một cách vật lý này sau đó có thể phát xạ lại ánh sáng ban đầu. Xung ánh sáng được khôi phục này lan truyền một cách chậm rãi khỏi vị trí BEC thứ hai trước khi đạt vận tốc 300000 km/s như vốn có của ánh sáng.

Vì hai vị trí BEC được tạo ra hoàn toàn độc lập, nên ta có thể hy vọng sự gửi đi các bó sóng từ vị trí đầu tiên đến một vị trí xa lạ BEC thứ hai. Thực tế không hẳn là hàm sóng ở trạng thái cơ bản có một thành phần trên cả hai vị trí BEC trong cùng một thời điểm để có thể tổ hợp với thành phần bị kích thích spin khi nó đến vị trí thứ hai. Thí nghiệm là một minh chứng hùng hồn của việc không phân biệt lượng tử. "Bằng cách thao tác cho vật chất sao chép lại nguyên bản ánh sáng ban đầu, chúng ta có thể sử dụng trong việc xử lý thông tin quang" - Hau phát biểu. Bà phát biểu trên Physics Web rằng thí nghiệm này có thể sẽ đưa đến kỹ thuật xử lý thông tin quang trong viễn thông quang và mạng thông tin lượng tử. Một ứng dụng khác có thể là cảm biến quay siêu nhạy hoặc detetor trọng trường.

(Nguồn: khoahoc )